Course Type	Course Code	Name of Course	L	Т	P	Credit
DC	NGPC531	Magnetic Method	3	1	0	4

Course Objective

Students are exposed to potential field theory, basic survey practices of data acquisition, advanced processing and interpretation methods of magnetic data used in today's oil and mineral exploration

Learning Outcomes

To emphasize the importance of the magnetic method in geophysical exploration.

Unit No.	Details of Lectures	Lecture Hrs. (L+T	Outcome
1.	Earth's main magnetic field: Origin and its variation in time and space; Magnetic Elements; Magnetic Vector and Scalar Potential; Poisson's Relation; Basics of Spherical Harmonics; Application of Spherical Harmonics to the Earth's Magnetic Field, Determination of the Gauss Coefficients, Interpretation of Spherical Harmonic terms.	9L + 3T	This unit introduces the concept of potential and the consequences of Laplace's equation. Also provides a brief discussion about the earth's magnetic field and theory of spherical harmonics to understand the global geomagnetic fields.
2.	Magnetic petrophysics and magnetic petrology: Induced and Remanent Magnetization; types of remanent magnetization; Mineral Magnetism; Magnetization of rocks and soils; Magnetic susceptibility, factors controlling susceptibility, Laboratory and in-situ methods of determining susceptibility.	6L +2T	It helps to understand the magnetization of different earth materials, and the physical and geological controlling factors and its importance in the planning surveys and interpreting the magnetic anomalies.
3.	Principle of magnetic prospecting, Instruments: Nuclear, fluxgate, and optical pumping magnetometers, gradient measurements; Plan of magnetic surveys in regional geological mapping and different exploration programs, Magnetic data reduction: diurnal and IGRF corrections; Airborne magnetometry: orientation mechanisms, survey techniques, data acquisition and reduction, Advantages and disadvantages; Brief principles of ship-borne and satellite magnetometry.	9L + 3T	Helps to understand the basic instruments, survey practices, and data processing techniques used in magnetic exploration.

4.	Qualitative interpretation of magnetic data: nature of anomalies, identification of different structural features; Dependence of magnetic anomalies on latitude and orientation; Isolation and enhancement of anomalies using graphical, trend surface analysis, digital filtering, first and second vertical derivatives, upward and downward continuation filters, reduction to Pole filter; Ambiguity in magnetic interpretation, generalized approach of interpretation.	9L + 3T	This unit emphasizes the several image enhancement techniques used in the Qualitative interpretation of magnetic data.
5.	Magnetic anomalies expressions over singlepole, dipole, line pole, sphere, cylinder, faults and dike, graticules and anomalies of irregular bodies; the relation between gravity and magnetic potentials; Depth determination methods: Peter's half slope, Werner and Euler deconvolution, and statistical spectral techniques; Application of the magnetic method in (i) Regional Geological and Structural problems (ii) Mineral and Hydrocarbon Exploration (iii) Groundwater and geotechnical problems, (iv) locating Coal fire zones, case histories.	9L + 3T	It provides the theoretical formulation of magnetic response due to simple geometrical bodies and source-depth determination techniques. It also provides extensive discussion of field examples related to resource exploration and crustal dynamics.
	Total Classes	42L+14T	

Text Books:

- Rao, B. S. R and Murthy, I. V.R., Gravity and Magnetic Methods of Prospecting, 1978.
- Hinze, W. J., Ralph, R. B. V and Saad, A.H. Gravity and Magnetic Exploration: Principles, Practices, and Applications, 2013.
- Blakely, R., Potential theory in gravity and magnetic applications, 1996.

Reference Books:

- Campbell, W.H., Introduction to Geomagnetic Fields. Cambridge University Press, 1997.
- Telford, W.M., Geldart, L. P and Sheriff, R.E., Applied Geophysics, 1990.
- Nettleton, L. L., Gravity and Magnetics in Oil prospecting, 1976.